9,955 research outputs found

    Parametrization of the Driven Betatron Oscillation

    Full text link
    An AC dipole is a magnet which produces a sinusoidally oscillating dipole field and excites coherent transverse beam motion in a synchrotron. By observing this coherent motion, the optical parameters can be directly measured at the beam position monitor locations. The driven oscillation induced by an AC dipole will generate a phase space ellipse which differs from that of the free oscillation. If not properly accounted for, this difference can lead to a misinterpretation of the actual optical parameters, for instance, of 6% or more in the cases of the Tevatron, RHIC, or LHC. The effect of an AC dipole on the linear optics parameters is identical to that of a thin lens quadrupole. By introducing a new amplitude function to describe this new phase space ellipse, the motion produced by an AC dipole becomes easier to interpret. Beam position data taken under the influence of an AC dipole, with this new interpretation in mind, can lead to more precise measurements of the normal Courant-Snyder parameters. This new parameterization of the driven motion is presented and is used to interpret data taken in the FNAL Tevatron using an AC dipole.Comment: 8 pages, 8 figures, and 1 tabl

    Negative modes and the thermodynamics of Reissner-Nordstr\"om black holes

    Full text link
    We analyse the problem of negative modes of the Euclidean section of the Reissner-Nordstr\"om black hole in four dimensions. We find analytically that a negative mode disappears when the specific heat at constant charge becomes positive. The sector of perturbations analysed here is included in the canonical partition function of the magnetically charged black hole. The result obeys the usual rule that the partition function is only well-defined when there is local thermodynamical equilibrium. We point out the difficulty in quantising Einstein-Maxwell theory, where the so-called conformal factor problem is considerably more intricate. Our method, inspired by hep-th/0608001, allows us to decouple the divergent gauge volume and treat the metric perturbations sector in a gauge-invariant way.Comment: 24 pages, 1 figure; v2 minor changes to fit published versio

    Iteration Method to Derive Exact Rotation Curves from Position-Velocity Diagrams of Spiral Galaxies

    Get PDF
    We present an iteration method to derive exact rotation curves (RC) of spiral galaxies from observed position-velocity diagrams (PVD), which comprises the following procedure. An initial rotation curve, RC0, is adopted from an observed PV diagram (PV0), obtained by any simple method such as the peak-intensity method. Using this rotation curve and an observed radial distribution of intensity (emissivity), we construct a simulated PV diagram (PV1). The difference between a rotation curve obtained from this PV1 and the original RC (e.g., difference between peak-intensity velocities) is used to correct the initial RC to obtain a corrected rotation curve, RC1. This RC1 is used to calculated another PVD (PV2) using the observed intensity distribution, and to obtain the second iterated RC (RC2). This iteration is repeated until PVii converges to PV0, so that the differences between PVii and PV0 becomes minimum. Finally RCii is adopted as the most reliable rotation curve. We apply this method to some observed PVDs of nearby galaxies, and show that the iteration successfully converges to give reliable rotation curves. We show that the method is powerful to detect central massive objects.Comment: To appear in ApJ.Letters, 5 pages Latex with 4 figure

    Passive spiral formation from halo gas starvation: Gradual transformation into S0s

    Full text link
    Recent spectroscopic and high resolution HSTHST-imaging observations have revealed significant numbers of ``passive'' spiral galaxies in distant clusters, with all the morphological hallmarks of a spiral galaxy (in particular, spiral arm structure), but with weak or absent star formation. Exactly how such spiral galaxies formed and whether they are the progenitors of present-day S0 galaxies is unclear. Based on analytic arguments and numerical simulations of the hydrodynamical evolution of a spiral galaxy's halo gas (which is a likely candidate for the source of gas replenishment for star formation in spirals), we show that the origin of passive spirals may well be associated with halo gas stripping. Such stripping results mainly from the hydrodynamical interaction between the halo gas and the hot intracluster gas. Our numerical simulations demonstrate that even if a spiral orbits a cluster with a pericenter distance ∼\sim 3 times larger than the cluster core radius, ∼\sim 80 % of the halo gas is stripped within a few Gyr and, accordingly, cannot be accreted by the spiral. Furthermore, our study demonstrates that this dramatic decline in the gaseous infall rate leads to a steady increase in the QQ parameter for the disk, with the spiral arm structure, although persisting, becoming less pronounced as the star formation rate gradually decreases. These results suggest that passive spirals formed in this way, gradually evolve into red cluster S0s.Comment: 13 pages 4 figures (fig.1 = jpg format), accepted by Ap

    Darwin Tames an Andromeda Dwarf: Unraveling the Orbit of NGC 205 Using a Genetic Algorithm

    Full text link
    NGC 205, a close satellite of the M31 galaxy, is our nearest example of a dwarf elliptical galaxy. Photometric and kinematic observations suggest that NGC 205 is undergoing tidal distortion from its interaction with M31. Despite earlier attempts, the orbit and progenitor properties of NGC 205 are not well known. We perform an optimized search for these unknowns by combining a genetic algorithm with restricted N-body simulations of the interaction. This approach, coupled with photometric and kinematic observations as constraints, allows for an effective exploration of the parameter space. We represent NGC 205 as a static Hernquist potential with embedded massless test particles that serve as tracers of surface brightness. We explore 3 distinct, initially stable configurations of test particles: cold rotating disk, warm rotating disk, and hot, pressure-supported spheroid. Each model reproduces some, but not all, of the observed features of NGC 205, leading us to speculate that a rotating progenitor with substantial pressure support could match all of the observables. Furthermore, plausible combinations of mass and scale length for the pressure-supported spheroid progenitor model reproduce the observed velocity dispersion profile. For all 3 models, orbits that best match the observables place the satellite 11+/-9 kpc behind M31 moving at very large velocities: 300-500 km/s on primarily radial orbits. Given that the observed radial component is only 54 km/s, this implies a large tangential motion for NGC 205, moving from the NW to the SE. These results suggest NGC 205 is not associated with the stellar arc observed to the NE of NGC 205. Furthermore, NGC 205's velocity appears to be near or greater than its escape velocity, signifying that the satellite is likely on its first M31 passage.Comment: 34 pages, 20 figures, accepted for publication in the Astrophysical Journal, A pdf version with high-resolution figures may be obtained from http://www.ucolick.org/~kirsten/ms.pd

    Disordered Carbon nanotube alloys in the Effect Medium Super Cell Approximation

    Full text link
    We investigate a disordered single-walled carbon nanotube (SWCNT) in an effective medium super cell approximation (EMSCA). First type of disorder that we consider is the presence of vacancies. Our results show that the vacancies induce some bound states on their neighbor host sites, leading to the creation of a band around the Fermi energy in the SWCNT average density of states.Second type of disorder considered is a substitutional BcbNcnC1−cb−cnB_{cb}N_{cn}C_{1-cb-cn} alloy due to it's applications in hetrojunctions. We found that for a fixed boron (nitrogen) concentration, by increasing the nitrogen (boron) concentration the averaged semiconducting gap, EgE_{g}, decreases and at a critical concentration it disappears. A consequence of our results for nano electronic devices is that by changing the boron(nitrogen) concentration, one can make a semiconductor SWCNT with a pre-determined energy gap.Comment: 4 page

    Language skills of profoundly deaf children who received cochlear implants under 12 months of age: a preliminary study

    Get PDF
    Conclusion. This study demonstrated that children who receive a cochlear implant below the age of 2 years obtain higher mean receptive and expressive language scores than children implanted over the age of 2 years. Objective. The purpose of this study was to compare the receptive and expressive language skills of children who received a cochlear implant before 1 year of age to the language skills of children who received an implant between 1 and 3 years of age. Subjects and methods. Standardized language measures, the Reynell Developmental Language Scale (RDLS) and the Preschool Language Scale (PLS), were used to assess the receptive and expressive language skills of 91 children who received an implant before their third birthday. Results. The mean receptive and expressive language scores for the RDLS and the PLS were slightly higher for the children who were implanted below the age of 2 years compared with the children who were implanted over 2 years old. For the PLS, both the receptive and expressive mean standard scores decreased with increasing age at implantation

    Considerations for an Ac Dipole for the LHC

    Get PDF
    Following successful experience at the BNL AGS, FNAL Tevatron, and CERN SPS, an AC Dipole will be adopted at the LHC for rapid measurements of ring optics. This paper describes some of the parameters of the AC dipole for the LHC, scaling from performance of the FNAL and BNL devices.Comment: proceedings of the 2007 Particle Accelerator Conferenc
    • …
    corecore